Effect of Graphene-Graphene Oxide Modified Anode on the Performance of Microbial Fuel Cell
نویسندگان
چکیده
The inferior hydrophilicity of graphene is an adverse factor to the performance of the graphene modified anodes (G anodes) in microbial fuel cells (MFCs). In this paper, different amounts of hydrophilic graphene oxide (GO) were doped into the modification layers to elevate the hydrophilicity of the G anodes so as to further improve their performance. Increasing the GO doped ratio from 0.15 mg·mg-1 to 0.2 mg·mg-1 and 0.25 mg·mg-1, the static water contact angle (θc) of the G-GO anodes decreased from 74.2 ± 0.52° to 64.6 ± 2.75° and 41.7 ± 3.69°, respectively. The G-GO0.2 anode with GO doped ratio of 0.2 mg·mg-1 exhibited the optimal performance and the maximum power density (Pmax) of the corresponding MFC was 1100.18 mW·m-2, 1.51 times higher than that of the MFC with the G anode.
منابع مشابه
Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملApplications of Graphene-Modified Electrodes in Microbial Fuel Cells
Graphene-modified materials have captured increasing attention for energy applications due to their superior physical and chemical properties, which can significantly enhance the electricity generation performance of microbial fuel cells (MFC). In this review, several typical synthesis methods of graphene-modified electrodes, such as graphite oxide reduction methods, self-assembly methods, and ...
متن کاملElectrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells
In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...
متن کاملPerformance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملEffect of recycling solid oxide fuel cell products on the performance of a SOFC-Gas turbine hybrid system
In this study, the effect of recycling fuel cell products on the performance of a solid oxide fuel cell and gas turbine (SOFC-GT) hybrid system was investigated. Three types of products recycling are considered: cathode products recycling (CPR), anode products recycling (APR), and both cathode and anode products recycling (BACPR). In the present work, operating temperature and limiting curre...
متن کامل